第12章 軸系轉換器(Shaft Converter)

SDP 軟體的所有模組皆採用軸系實體模型(Full Model)的相關物理參數作為 軸系分析的輸入數據,然而,在進行軸系扭轉振動分析時,國際上很多研究單 位習慣採用軸系的等效模型(Equivalent Model)來進行軸系的扭轉振動計算。SDP 軟體之軸系轉換器(Shaft Converter)的主要功能即在於協助使用者將實體模型 (Full Model)轉換為等效模型(Equivalent Model),以使未來的軸系扭轉強迫振動計 算可以順利進行。本章將介紹 SDP 軟體之軸系轉換器(Shaft Converter)的使用方 法,相關的詳細步驟敘述如下:

【步驟1】在 SDP 軟體中用滑鼠點選功能表 <u>Applications / Shaft Converter</u>項目, 以利啟動軸系轉換器(Shaft Converter)。

【步驟 2】此時, SDP 軟體會啟動軸系轉換器(Shaft Converter), 如下圖所示。

H Shaft Converter							
2 = < > ○ 1 2 1 3 1 4 × 3 2 4 1 5	enar	ne : None					
	Ma	terial Databa	se				
		Add	Remo	ove	Insert	Move Up	Move Down
				Young (N/m^	g Modulus 2)	Mass Density (kg/m^3)	Poisson Ratio
	Þ	Material 1	L	2.069e	11	7850	0.3
		Material 2	2	2.069e	11	6825	0.3
		Material 3	3	2.069e	11	6950	0.3
	L	Material 4	1	2.069e)	11	1e-1	0.3
				Ele	ement Prop	erties	
					Value		Unit
Shaft Converter							
Equivalent Disk PolarInertia : 🛖 🗙 🔺 🔍 Calculate Equivalent Spring-Mass System : Calculate [🛉 😝							
Diameter Thickness Density Polar Inertia							
(mm) (mm) (Kg/m~2)							
×							
~							

Equ	ivalent Dis	k PolarInei	rtia : 🕂 🗙		[Calcula	ate
		Diameter (mm)	Thickness (mm)	Density (kg/m^3)	Polar (kg.n	Inertia n^2)	
►	Set 1	1000	50	7850	38.53		

【步驟 3】 軸系轉換器(Shaft Converter) 的左下角有一個表格,只要輸入圓盤 的相關參數(直徑、厚度與密度),按下 Calculate 按鈕,SDP 軟體即會協助使用 者計算圓盤的極慣性矩(Polar Moment of Inertia),如左圖所示。 【步驟 4】在軸系轉換器(Shaft Converter)中,使用者可以依照第5章的 方法來建立軸系的數學模型。為了節省篇幅,本章不再重覆建立軸系的 數學模型,而是以第5章所建立的軸系作為研究的對象。請使用者按一 下 Open File 按鈕, 然後打開下列位置的軸系檔案: SDP_V210_00xx/Samples/Demo_Shaft.sdp。打開上述檔案後,SDP軟體會 另外開啟側向振動分析模組(Transverse Vibration Analysis Full),並將上述 軸系檔案載入。

2

在各模組之間進行軸系模型轉換,換句話說,使用者不需要針對不同模組各別建立軸系模型,軸系建模只要一次即可,大大降低工程師的工作負擔。

✔ 【步驟 5】上一個步驟所開啟的軸系模型是在側向振動分析模組 (Transverse Vibration Analysis Full)中載入,但是,我們現在是要將軸系實 體模型(Full Model)轉換為等效模型(Equivalent Model),此時,使用者可 先在側向振動分析模組(Transverse Vibration Analysis Full)中按 Copy Shaft 按鈕,按完 Copy Shaft 按鈕後,軸系的所有物理參數便會全部複製到 SDP 軟體的剪貼簿中(SDP 軟體的剪貼簿與 Windows 系統的剪貼簿不相同,不 會互相影響或干擾)。

TRF Transverse Vibration Analysis FULL D:\SDP_Version_2.10\SDP_Version_2_10_030_Shaft_Cor	nverter\ShaftD	esignPlatform∖	,bin\Releas	e\Sam	
I I I I I I I I I I I I I I I I I I I	D:\SDP_V tDesignPl	/ersion_2.10\SDP atform\bin\Releas	'_Version_2_ æ\Samples\D(_10_030_Shaf emo_Shaft.sdp	t_Converter\Shaf
	- Material Datab Add	Remove	Insert	Move IIn	Move Down
● 側向振動分析模組 Copy Shaft		Young	Modulus N	Mass Density kø/m^3)	Poisson Ratio
(Transverse Vibration Analysis Full)	Material	1 2.069e1	1 78	350	0.3
╽╔╦ <mark>┛╤╖╗╗╗┙┙╝╖┙╼╹┛╌╴╴╴╴╴╴╴╴╴╶╴╴╴╴╴╴╸╹┍╼╼╼</mark> ┨╟╓╍╟╌┙╢╌┙╢╴┙	Material	2 2.069e1	1 68	325	0.3
╎╎ ┈<mark>╫</mark>┊┊┊┊┊┊┊┊┊┊┊┊┊┊┊┊┊ ╢╧╌╌╌╌╴┊╴╴╴╴┊╴╴╴╴╴╴╴╴╴╴╴ <mark>╟┯┷╕</mark> ╟╢╝╬┊╝╠┊╢┝╎╝ <mark>╟</mark> ┊╝╟┊╢	Material	3 2.069e1	1 69	950	0.3
↓ ¥	Element Properties				
		V	/alue		Unit
Withouting					
General Vibration Analysis Whinling Vibration Analysis					
Image: Second symplectic symplect symplect symplectic symplectic symplectic symplectic symplectic					
Title : Demo_Shaft					

 【步驟6】切換到軸系轉換器(Shaft Converter),按 Paste Shaft 按鈕,此時,SDP 軟體剪貼簿中的軸系便會貼到軸系轉換器(Shaft Converter)中。 在軸系數學模型的轉換中,軸承、圓盤與螺旋漿的參數,在不一樣模組 中可能有所不同,所以,必須檢查一下軸承、圓盤與螺旋漿的參數是否 合乎扭轉振動分析(Torsional Vibration Analysis)的要求,如果有不適當的 地方,則要做適當修改。在此,請使用者將螺旋槳的 PolarInertia1 設為 1.0kg.m², Disk 1 至 Disk 5 的 PolarInertia1 分別設為 2.0kg.m²、 3.0kg.m²、4.0kg.m²、5.0kg.m² 與 6.0kg.m²。上述參數僅為示範用參 數,可能與事實不符,在此特予聲明。

【步驟7】按一下 Calculate 按鈕, SDP 軟體即會協助使用者將軸系實體模型(Full Model)轉換為等效模型(Equivalent Model),如下圖所示。上述軸系等效模型可以 使未來的軸系扭轉強迫振動計算更順利進行。

【說明】SDP 軟體所轉換出來的等效模型(Equivalent Model), 說明如下所示。

```
PolarInertia 5
        +
 Segment 5
 PolarInertia 6
        +
 Segment 6
 PolarInertia 7
 Segment 7
        +
 PolarInertia 8
_____
*** PolarInertia 1 ***
PolarInertia = 0.0e+00 kg.m^2
*** PolarInertia 2 ***
PolarInertia = 1.0e+00 kg.m^2
*** PolarInertia 3 ***
PolarInertia = 2.0e+00 kg.m^2
*** PolarInertia 4 ***
PolarInertia = 3.0e+00 kg.m^2
*** PolarInertia 5 ***
PolarInertia = 4.0e+00 kg.m^2
*** PolarInertia 6 ***
PolarInertia = 5.0e+00 kg.m^2
*** PolarInertia 7 ***
PolarInertia = 6.0e+00 kg.m^2
*** PolarInertia 8 ***
PolarInertia = 0.0e+00 kg.m^2
_____
*** Segment 1 ***
Total PolarInertia = 1.07531854e-03 kg.m<sup>2</sup>
_____
Kt = 4.63595726e+05 Nm/rad
J (@ Left End) = 3.50196322e-04 kg.m^2
J (@ Right End) = 7.2512222e-04 kg.m^2
*** Segment 2 ***
Total PolarInertia = 3.69778521e-02 kg.m^2
-----
Kt = 2.54123652e+04 Nm/rad
J (@ Left End) = 1.99834079e-02 kg.m^2
J (@ Right End) = 1.69944442e-02 kg.m^2
*** Segment 3 ***
Total PolarInertia = 6.74326885e-03 kg.m^2
```

```
Kt = 2.93779384e+05 Nm/rad
J (@ Left End) = 6.38931812e-03 kg.m^2
J (@ Right End) = 3.53950727e-04 kg.m^2
*** Segment 4 ***
Total PolarInertia = 8.52893318e-04 kg.m^2
-----
Kt = 2.44138942e+05 Nm/rad
J (@ Left End) = 4.26446659e-04 kg.m^2
J (@ Right End) = 4.26446659e-04 kg.m^2
*** Segment 5 ***
Total PolarInertia = 8.52893318e-04 kg.m^2
-----
Kt = 2.44138942e+05 Nm/rad
J (@ Left End) = 4.26446659e-04 kg.m^2
J (@ Right End) = 4.26446659e-04 kg.m^2
*** Segment 6 ***
Total PolarInertia = 8.52893318e-04 kg.m^2
-----
Kt = 2.44138942e+05 Nm/rad
J (@ Left End) = 4.26446659e-04 kg.m^2
J (@ Right End) = 4.26446659e-04 kg.m^2
*** Segment 7 ***
Total PolarInertia = 4.26446659e-04 kg.m^2
-----
Kt = 4.88277885e+05 Nm/rad
J (@ Left End) = 2.1322333e-04 kg.m^2
J (@ Right End) = 2.1322333e-04 kg.m^2
----- E N D -----
```